Home Systems of Equations Adding and Subtracting Rational Expressions with Different Denominators Graphing Linear Equations Raising an Exponential Expression to a Power Horizontal Line Test Quadratic Equations Mixed Numbers and Improper Fractions Solving Quadratic Equations by Completing the Square Solving Exponential Equations Adding and Subtracting Polynomials Factorizing simple expressions Identifying Prime and Composite Numbers Solving Linear Systems of Equations by Graphing Complex Conjugates Graphing Compound Inequalities Simplified Form of a Square Root Solving Quadratic Equations Using the Square Root Property Multiplication Property of Radicals Determining if a Function has an Inverse Scientific Notation Degree of a Polynomial Factoring Polynomials by Grouping Solving Linear Systems of Equations Exponential Functions Factoring Trinomials by Grouping The Slope of a Line Simplifying Complex Fractions That Contain Addition or Subtraction Solving Absolute Value Equations Solving Right Triangles Solving Rational Inequalities with a Sign Graph Domain and Range of a Function Multiplying Polynomials Slope of a Line Inequalities Multiplying Rational Expressions Percent of Change Equations Involving Fractions or Decimals Simplifying Expressions Containing only Monomials Solving Inequalities Quadratic Equations with Imaginary Solutions Reducing Fractions to Lowest Terms Prime and Composite Numbers Dividing with Exponents Dividing Rational Expressions Equivalent Fractions Graphing Quadratic Functions Polynomials Linear Equations and Inequalities in One Variable Notes on the Difference of 2 Squares Solving Absolute Value Inequalities Solving Quadratic Equations Factoring Polynomials Completely Using Slopes to Graph Lines Fractions, Decimals and Percents Solving Systems of Equations by Substitution Quotient Rule for Radicals Prime Polynomials Solving Nonlinear Equations by Substitution Simplifying Radical Expressions Containing One Term Factoring a Sum or Difference of Two Cubes Finding the Least Common Denominator of Rational Expressions Conjugates Multiplying Rational Expressions Expansion of a Product of Binomials Solving Equations Exponential Growth Factoring by Grouping Solving One-Step Equations Using Models Solving Quadratic Equations by Factoring Adding and Subtracting Polynomials Rationalizing the Denominator Rounding Off The Distributive Property What is a Quadratic Equation Laws of Exponents and Multiplying Monomials The Slope of a Line Factoring Trinomials by Grouping Multiplying and Dividing Rational Expressions Solving Linear Inequalities Multiplication Property of Exponents Multiplying and Dividing Fractions 3 Formulas Dividing Monomials Multiplying Polynomials Adding and Subtracting Functions Dividing Polynomials Absolute Value and Distance Multiplication and Division with Mixed Numbers Factoring a Polynomial by Finding the GCF Roots Adding and Subtracting Polynomials The Rectangular Coordinate System Polar Form of a Complex Number Exponents and Order of Operations Graphing Horizontal and Vertical Lines Invariants Under Rotation The Addition Method Solving Linear Inequalities in One Variable The Pythagorean Theorem

## Roots

For even values of n , the expression is defined to be the positive nth root of a or the principal nth root of a. For example, denotes the positive second root, or square root, of a , while is the positive fourth root of a. When n is odd, there is only one n th root, which has the same sign as a. For example, , the cube root of a, has the same sign as a. By definition, if then . On a calculator, a number is raised to a power using a key labeled For example, to take the fourth root of 6 on a TI-83 calculator, enter , to get the result 1.56508458.

EXAMPLE 1

Calculations with Exponents

## Rational Exponents

In the following definition, the domain of an exponent is extended to include all rational numbers.

DEFINITION OF

For all real numbers a for which the indicated roots exist, and for any rational number m/n

EXAMPLE 2

Calculations with Exponents

NOTE could also be evaluated as but this is more difficult to perform without a calculator because it involves squaring 27, and then taking thecube root of this large number. On the other hand, when we evaluate it as we know that the cube root of 27 is 3 without using a calculator, and squaring 3 is easy.

All the properties for integer exponents given in this section also apply to any rational exponent on a nonnegative real-number base.

EXAMPLE 3

Simplifying Exponential Expressions

In calculus, it is often necessary to factor expressions involving fractional exponents.

EXAMPLE 4

Simplifying Exponential Expressions

Factor out the smallest power of the variable, assuming all variables represent positive real numbers.

Solution

To check this result, multiply by

Solution

The smallest exponent here is 3. Since 3 is a common numerical factor, factor out

Check by multiplying. The factored form can be written without negative exponents as

.

Solution

There is a common factor of 2. Also, have a common factor. Always factor out the quantity to the smallest exponent. Here -1/2 < 1/2 so the common factor is and the factored form is